Closing Thur: $\quad 12.4(1), 12.4(2), 12.5(1)$
Closing Tue: $\quad 12.5(2), 12.5(3), 12.6$
Please check out my 3 review sheets and one practice page on Lines and Planes.

12.5 Lines and Planes in 3D

Lines: We use parametric equations
for 3D lines. Here's a 2D warm-up:

Consider the 2D line: $y=4 x+5$.
(a) Find a vector parallel to the line.

Call it \mathbf{v}.
(b) Find a vector whose head touches
the line when drawn from the origin. Call it \mathbf{r}_{0}.
(c) Observe, we can reach all other points on the line by walking along This same idea works to describe r_{0}, then adding scale multiples of \mathbf{v}. any line in 2 - or 3-dimensions.

Summary of Line Equations

Let ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) be any point on the line and $\boldsymbol{r}=\langle x, y, z\rangle=$ "vector pointing to this point from the origin."
Find a direction vector and a point on the line.

1. $\boldsymbol{v}=\langle a, b, c\rangle \quad$ direction vector

2. $\boldsymbol{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ position vector

$$
\begin{array}{ll}
\boldsymbol{r}=\boldsymbol{r}_{\mathbf{0}}+\mathrm{t} \boldsymbol{v} & \text { vector form } \\
(x, y, z)=\left(x_{0}+a t, y_{0}+b t, z_{0}+c t\right) & \text { parametric form } \\
x=x_{0}+a t, & \\
y=y_{0}+b t, & \\
z=z_{0}+c t . & \\
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} & \text { symmetric form }
\end{array}
$$

Basic Example - Given Two Points:
Find parametric equations of the line thru $\mathrm{P}(3,0,2)$ and $\mathrm{Q}(-1,2,7)$.

General Line Facts

1. Two lines are parallel if their direction vectors are parallel.
2. Two lines intersect if they have an (x, y, z) point in common. Use different parameters when you combine!

Note: The acute angle of intersection is the acute angle between the direction vectors.
3. Two lines are skew if they don't intersect and aren't parallel.

Summary of Plane Equations

Let ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) be any point on the plane $\boldsymbol{r}=\langle x, y, z\rangle=$ "vector pointing to this point from the origin."
Find a normal vector and a point on the plane.

1. $\boldsymbol{n}=\langle a, b, c\rangle \quad$ normal vector
2. $\boldsymbol{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ position vector

$$
\begin{array}{ll}
\boldsymbol{n} \cdot\left(\boldsymbol{r}-\boldsymbol{r}_{\mathbf{0}}\right)=0 & \text { vector form } \\
\langle a, b, c\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0 & \\
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 & \text { standard form }
\end{array}
$$

If you expand out standard form you can write:

$$
\begin{array}{ll}
a x-a x_{0}+b y-b y_{0}+c z-c z_{0}=0 \\
a x+b y+c z=d \quad, & \text { where } d=a x_{0}+b y_{0}+c z_{0}
\end{array}
$$

Basic Example - Given Three Points:
Find the equation for the plane
through the points $\mathrm{P}(0,1,0)$,
$Q(3,1,4)$, and $R(-1,0,0)$

General Plane Facts

1. Two planes are parallel if their normal vectors are parallel.
2. If two planes are not parallel, then they must intersect to form a line.

2a. The acute angle of intersection is the acute angle between their normal vectors.
$2 b$. The planes are orthogonal if their normal vectors are orthogonal.

12.5 Summary

Lines: Find a POINT and DIRECTION.

$$
\begin{array}{cc}
v=\langle a, b, c\rangle & \text { direction vector } \\
\boldsymbol{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle & \text { position vector } \\
x=x_{0}+a t, y=y_{0}+b t, z=z_{0}+c t .
\end{array}
$$

To find equations for a line

Info given?

Done.

Find two points

$\vec{v}=\overrightarrow{A B}$
(subtract

$$
\overrightarrow{r_{0}}=\vec{A}
$$

components)
lines parallel - directions parallel.
lines intersect - make (x, y, z) all equal (different param!)
Otherwise, we say they are skew.

Planes: Find a POINT and NORMAL

$$
\boldsymbol{n}=\langle a, b, c\rangle
$$

$$
\boldsymbol{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle \quad \text { position vector }
$$

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

To find the equation for a plane

Info given?

Find three points

Done.

Two vectors parallel to the plane: $\overrightarrow{A B}$ and $\overrightarrow{A C}$

$$
\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C} \quad \overrightarrow{r_{0}}=\vec{A}
$$

planes parallel - normals parallel. Otherwise, the planes intersect.

1. Find an equation for the line that goes through the two points $A(1,0,-2)$ and $B(4,-2,3)$.
2. Find an equation for the line that is parallel to the line $x=3-t$, $y=6 t, z=7 t+2$ and goes through the point $P(0,1,2)$.
3. Find an equation for the line that is orthogonal to $3 x-y+2 z=10$ and goes through the point $P(1,4,-2)$.
4. Find an equation for the line of intersection of the planes

$$
\begin{aligned}
& 5 x+y+z=4 \text { and } \\
& 10 x+y-z=6 .
\end{aligned}
$$

1. Find the equation of the plane that goes through the three points $A(0,3,4), B(1,2,0)$, and $C(-1,6,4)$.
2. Find the equation of the plane that is orthogonal to the line

$$
x=4+t, y=1-2 t, z=8 t \text { and }
$$ goes through the point $\mathrm{P}(3,2,1)$.

3. Find the equation of the plane that is parallel to $5 x-3 y+2 z=6$ and goes through the point $\mathrm{P}(4,-1,2)$.
4. Find the equation of the plane that contains the intersecting lines

$$
\begin{aligned}
& x=4+t_{1}, y=2 t_{1}, z=1-3 t_{1} \text { and } \\
& x=4-3 t_{2}, y=3 t_{2}, z=1+2 t_{2} .
\end{aligned}
$$

5. Find the equation of the plane that is orthogonal to $3 x+2 y-z=4$ and goes through the points $\mathrm{P}(1,2,4)$ and Q(-1,3,2).
6. Find the intersection of the line $x=3 t, y=1+2 t, z=2-t$ and the plane $2 x+3 y-z=4$.
7. Find the intersection of the two lines $x=1+2 t_{1}, y=3 t_{1}, z=5 t_{1}$ and $\mathrm{x}=6-\mathrm{t}_{2}, \mathrm{y}=2+4 \mathrm{t}_{2}, \mathrm{z}=3+7 \mathrm{t}_{2}$ (or explain why they don't intersect).
8. Find the intersection of the line $x=2 t, y=3 t, z=-2 t$ and the sphere $x^{2}+y^{2}+z^{2}=16$.
9. Describe the intersection of the plane $3 y+z=0$ and the sphere $x^{2}+y^{2}+z^{2}=4$.

Questions directly from old tests:

1. Consider the line thru $(0,3,5)$ that is orthogonal to the plane
$2 x-y+z=20$.
Find the point of intersection of the line and the plane.
2. Find the equation for the plane that contains the line
$x=t, y=1-2 t, z=4$ and
the point $(3,-1,5)$.

Side comment
(one of the many uses of projections)
If you want the distance between two parallel planes, then
(a) Find any point on the first plane ($\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$) and any point on the second plane (x_{1}, y_{1}, z_{1}).
(b) Write $\mathbf{u}=\left\langle\mathrm{x}_{1}-\mathrm{x}_{0}, \mathrm{y}_{1}-\mathrm{y}_{0}, \mathrm{z}_{1}-\mathrm{z}_{0}\right\rangle$
(c) Project \mathbf{u} onto one of the normal vector n .
$\left|\operatorname{comp}_{\mathrm{n}}(\mathbf{u})\right|=$ dist. between planes

